Analyzing human-swarm interactions using control Lyapunov functions and optimal control
نویسندگان
چکیده
A number of different interaction modalities have been proposed for human engagement with networked systems. In this paper, we establish formal guarantees for whether or not a given such human-swarm interaction (HSI) strategy is appropriate for achieving particular multi-robot tasks, such as guiding a swarm of robots into a particular geometric configuration. In doing so, we define what it means to impose an HSI control structure on a multi-robot system. Control Lyapunov functions are used to establish feasibility for a user to achieve a particular geometric configuration with a multi-robot system under some selected HSI control structure. Several examples of multi-robot systems with unique HSI control structures are provided to illustrated the use of CLFs to establish feasibility. Additionally, we also uses these examples to illustrate how to use optimal control tools to compute three metrics for evaluating an HSI control structure: attention, effort, and scalability.
منابع مشابه
Optimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients
Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...
متن کاملHuman-Swarm Interactions via Coverage of Time-Varying Densities
One of the main challenges in human-swarm interactions is the construction of suitable abstractions that make an entire robot team amenable to human control. For such abstractions to be useful, they need to scale gracefully as the number of robots increases. In this work, we consider the use of time-varying density functions to externally influence a robot swarm. Density functions abstract away...
متن کاملDesign of On-Line Nonlinear Kinematic Trajectory Tracking Controller for Mobile Robot based on Optimal Back-Stepping Technique
This paper presents an on-line nonlinear trajectory tracking control algorithm for differential wheeled mobile robot using optimal back-stepping technique based particle swarm optimization while following a pre-defined continuous path. The aim of the proposed feedback nonlinear kinematic controller is to find the optimal velocity control action for the real mobile robot. The particle swarm opti...
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کاملOptimal intelligent control for glucose regulation
This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. Then, to overcome the key drawback of fuzzy logic contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NHM
دوره 10 شماره
صفحات -
تاریخ انتشار 2015